Sequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology
نویسندگان
چکیده
Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle cement is comprised of low complexity proteins; they are organized into repetitive sequence blocks and found to maintain homology to silk motifs. Proteomic analysis of aggregate bands from PAGE gels reveal an abundance of Gly/Ala/Ser/Thr repeats exemplified by a prominent, previously unidentified, 43 kDa protein in the solubilized adhesive. Low complexity regions found throughout the cement proteome, as well as multiple lysyl oxidases and peroxidases, establish homology with silk-associated materials such as fibroin, silk gum sericin, and pyriform spidroins from spider silk. Distinct primary structures defined by homologous domains shed light on how barnacles use low complexity in nanofibers to enable adhesion, and serves as a starting point for unraveling the molecular architecture of a robust and unique class of adhesive nanostructures.
منابع مشابه
Characterization of Two 20kDa-Cement Protein (cp20k) Homologues in Amphibalanus amphitrite
The barnacle, Amphibalanus amphitrite, is a common marine fouling organism. Understanding the mechanism of barnacle adhesion will be helpful in resolving the fouling problem. Barnacle cement is thought to play a key role in barnacle attachment. Although several adult barnacle cement proteins have been identified in Megabalanus rosa, little is known about their function in barnacle settlement. I...
متن کاملBarnacle cement: a polymerization model based on evolutionary concepts.
Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypo...
متن کاملNovel barnacle underwater adhesive protein is a charged amino acid-rich protein constituted by a Cys-rich repetitive sequence.
Barnacle cement is an underwater adhesive that is used for permanent settlement, and is an insoluble protein complex. A method for rendering soluble the cement of Megabalanus rosa has been developed, and three major proteins have been identified in a previous study. To survey the M. rosa cement proteins in a lower molecular mass range, the cement proteins were separated by reversed-phase HPLC a...
متن کاملAdhesive Proteins of Stalked and Acorn Barnacles Display Homology with Low Sequence Similarities
Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins 'sticky' has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the ac...
متن کاملThe silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., - a review
The domesticated silkworm, Bombyx mori Linn., a lepidopteran molecular model and an important economic insect that are emerging as an ideal molecular genetic resource for solving a broad range of biological problems. The silkworm, B. mori produces massive amount of silk proteins during the final stage of larval development. These proteins are stored in the middle silk gland and they are dischar...
متن کامل